Poultry
xClose

Loading ...
Swine
xClose

Loading ...
Dairy & Ruminant
xClose

Loading ...
Aquaculture
xClose

Loading ...
Feed
xClose

Loading ...
Animal Health
xClose

Loading ...
Animal Health


Age-dependent patterns of bovine tuberculosis in cattle


Ellen Brooks-Pollock, Andrew JK Conlan, Andy P Mitchell, Ruth Blackwell, Trevelyan J McKinley and James LN Wood

 


Bovine tuberculosis (BTB) is an important livestock disease, seriously impacting cattle industries in both industrialised and pre-industrialised countries. Like TB in other mammals, infection is life long and, if undiagnosed, may progress to disease years after exposure. The risk of disease in humans is highly age-dependent, however in cattle, age-dependent risks have yet to be quantified, largely due to insufficient data and limited diagnostics. Here, we estimate age-specific reactor rates in Great Britain by combining herd-level testing data with spatial movement data from the Cattle Tracing System (CTS). Using a catalytic model, we find strong age dependencies in infection risk and that the probability of detecting infection increases with age. Between 2004 and 2009, infection incidence in cattle fluctuated around 1%. Age-specific incidence increased monotonically until 24-36 months, with cattle aged between 12 and 36 months experiencing the highest rates of infection. Beef and dairy cattle under 24 months experienced similar infection risks; however major differences occurred in older ages. The average reproductive number in cattle was greater than 1 for the years 2004-2009. These methods reveal a consistent pattern of BTB rates with age, across different population structures and testing patterns. The results provide practical insights into BTB epidemiology and control, suggesting that targeting a mass control programme at cattle between 12 and 36 months could be beneficial.

 


For more of the article, please click here.


Article made possible through the contribution of Brooks-Pollock et al., Veterinary Research and BioMed Central.

Share this article on FacebookShare this article on TwitterPrint this articleForward this article
Previous
My eFeedLink last read