Poultry
xClose

Loading ...
Swine
xClose

Loading ...
Dairy & Ruminant
xClose

Loading ...
Aquaculture
xClose

Loading ...
Feed
xClose

Loading ...
Animal Health
xClose

Loading ...
RSS
Monday, September 9, 2019 5:03:01 PM
Print this articleForward this article


Maintaining piglet growth and health without zinc oxide


Dr. Ping Ren, research scientist at Novus International, Inc.

 


Zinc is one of the most important nutrients for animal growth and health. It is the key component for numerous proteins, crucial enzymes and transcription factors. Throughout the world, pharmacological levels of zinc oxide are used in weaning pig diets to promote growth and improve feed efficiency, as well as help piglets cope with post-weaning challenges like post-weaning diarrhea, bowel edema disease and reduced feed intake.


Unfortunately, zinc oxide has an antagonistic effect in that it is easily dissociated in the stomach and can bind to other compounds of the diet resulting in, for instance, the formation of zinc-phytate complexes. The formed complex can hinder phytase efficacy, resulting in less phosphorus being released from the phytate molecule.


Beyond this waste of nutrients, in some parts of the world environmental concerns have resulted in an increase in regulations surrounding the use of minerals in animal feed. In 2016, the European Medicines Agency ruled that the environmental risks of zinc oxide outweigh the benefits to livestock. Studies found significant increases of zinc in fields fertilized with swine manure, which raised concerns about run-off risks to aquaculture as well as zinc levels of food farmed in that soil. As a result, in 2017 the European Commission confirmed a ban on pharmacological dosages of zinc from zinc oxide, giving member states until 2022 to phase out all use. In China, producers have been limited to 1600 ppm zinc oxide for the first two weeks post-weaning since July 2018.


Producers seeking zinc replacement


According to reports, an estimated 70-90 percent of piglet starter diets in the EU contain pharmaceutical levels of zinc oxide. Understandably, producers throughout Europe oppose the zinc oxide ban. Their concerns are that without zinc oxide there will be more incidents of post-weaning diarrhea in piglets and that the industry may resort to using more antibiotics to maintain piglet health thereby increasing the potential that animals will build a resistance to medications. Coupled with an increasing consumer demand for low antibiotic or antibiotic-free meat, this regulation poses serious challenges to those in swine production.


For these reasons researchers at Novus International, Inc. (Saint Charles, Missouri, U.S.A.) investigated if lower levels of organic trace minerals provided as MINTREX® Zn (Zn-MHAC), thanks to superior bioavailability, do not produce the same environmental impact as its inorganic counterpart zinc oxide, thus, serving as an appropriate surrogate. 


A research trial examined this substitution in 288 weaning barrows over a 42-day period and found that piglets fed 100 mg of zinc per kg of feed (ppm of zinc) from Zn-MHAC showed nearly the same average daily gain in the entire nursery period as the pharmacological dose of 2000 mg of zinc per kg of feed (ppm of zinc) from zinc oxide. Under these specific conditions, Zn-MHAC was effective at a level 20 times lower than zinc oxide. Zinc oxide did perform better than Zn-MHAC in terms of average daily gain during days 0-14 but pigs supplemented with Zn-MHAC tended to have greater (P= 0.06) gain-to-feed during days 14-28. What accounts for the increased feed efficiency? The study found that piglets supplemented with Zn-MHAC tended to show a shorter villus width in the ileum of the small intestines on day 42. Researchers suggest this is indicative of less gut inflammation and could signify a healthier digestive tract, which could be the reason for the improved feed efficiency during days 14-28.

 
 


Methionine improves absorption


When considering the results of this research trial it's not enough to say "the organic trace mineral outperformed the inorganic mineral" since that doesn't explain why. Inorganic trace mineral sources, like zinc oxide, are at a disadvantage the moment they enter the animal as they are subject to antagonisms and interactions with other components in the digestive tract. The mineral can become bound, unable to be absorbed and ultimately excreted. A disruption in nutrient bioavailability, metabolic deficiencies or over-feeding can be the result.


The organic trace mineral in Zn-MHAC doesn't suffer the same fate of its inorganic counterpart as it is chelated to the amino acid ligand, HMTBa (Novus's ALIMET® feed supplement), an 88% active source of methionine. The mineral-ligand combination forms a double coordinate covalent bond of zinc and HMTBa that essentially protects the zinc, creating a stable molecule and reducing the impact from antagonisms. With this stability in the gastrointestinal tract, less phytate-metal complexes are formed and phytase efficiency is maintained as a result. This allows for more efficient delivery and uptake in the small intestine.


Better phosphorus and calcium digestibility


Along with performing similarly as zinc oxide at lower inclusion where growth was concerned piglets receiving Zn-MHAC also exhibited better phosphorus digestibility (12.68% increase) even in the presence of 500 FTU/kg phytase. The evidence of higher phosphorus digestibility could explain the compensatory growth performance of piglets supplemented with Zn-MHAC compared with zinc oxide. Researchers also found that 100 ppm of zinc from Zn-MHAC provided a greater uplift in calcium digestibility (6.45% increase) than zinc oxide even with the presence of 500 FTU/kg phytase. This result suggests that Zn-MHAC optimizes the effect of the phytase, allowing the body to absorb more calcium.


This research demonstrated that MINTREX® Zn can be used to reduce and replace pharmacological levels of zinc oxide at far lower inclusion. Researchers also illustrated that MINTREX® Zn could improve phytase efficacy in terms of releasing more phosphorus from the phytate molecule than zinc oxide. This means less inorganic phosphorus supplementation would be required in the diet.

 


About Novus International, Inc.


Novus International, Inc. is headquartered in metropolitan Saint Charles, Missouri, U.S.A. and serves customers in over 100 countries around the world. A global leader in developing animal health and nutrition solutions, Novus International's products include ALIMET® and MHA® feed supplements, ACTIVATE® nutritional feed acid, ACIDOMIX® preservative premixture, CIBENZA® enzyme feed additive, MINTREX® chelated trace minerals, SANTOQUIN® feed preservative, AGRADO® feed antioxidant and many other specialty ingredients. Stratum Nutrition, a division of Novus Nutrition Brands, LLC, focuses on human nutrition through specialty and functional ingredients for manufacturers of foods, beverages and dietary supplements (www.stratumnutrition.com). Novus is privately owned by Mitsui & Co. (U.S.A.), Inc. and Nippon Soda Co., Ltd. For more information, visit www.novusint.com. ©2019 Novus International, Inc. All rights reserved.
 
 
For more of the article, please click here.

Article made possible through the contribution of Dr. Ping Ren and Novus International, Inc.
 
Share this article on FacebookShare this article on TwitterPrint this articleForward this article
Previous
My eFeedLink last read